SYNTHESIS OF A COREY'S LACTONE ANALOGUE FROM THE IRIDOID AUCUBIN

Carlo Bonini* and Romano Di Fabio

Centro per la Chimica delle Sostanze Organiche Naturali del C N R , Istituto di Chimica Organica, Universita' di Roma, P le Aldo Moro 2, 00185 Roma, Italy

Abstract Synthesis of a Corey's lactone analogue and a synthon for ll-deoxy-ll-methyl prostaglandin and prostacyclin from the iridoid glucoside Aucubin is described

Natural irridoid glucosides such as Aucubin and Asperuloside have recently been reported to be starting materials for prostaglandins 2 . These glucosides are commercially attractive because they are readily available, in excellent yield, from several common plants. In a recent publication we also reported obtaining two new prostaglandin synthons (9,11-deoxy-ll-methyl) starting from Aucubin $\frac{1}{2}$. Now we wish to report our approach to a modified Corey's lactone $\frac{10}{2}$, which constitutes a formal total synthesis of the analogous prostaglandin and prostacyclin $\frac{1}{2}$ (scheme 1)

Aucubin $\underline{1}$ was transformed in good yield (80%) to the known monodeoxyaucubin $\underline{2}^5$ by Birch reduction (Li/NH₃), performed at low temperature (-70°C) for 10 min to avoid, as much as possible, the formation of the dideoxyaucubin $\underline{3}$ (in this way, $\underline{3}$ was obtained as only 10% of the overall yield from Aucubin $\underline{1}$) After purification (silica gel chromatography) $\underline{2}$ was acetylated (Ac₂O in Py, lh, r t) to give $\underline{4}$ which was treated with NBS in anhydrous DMSO for 20 min to yield the bromolactone $\underline{5}$ Without purification $\underline{5}$ was reduced by Zn/CH₃COOH in ether (10 min) to the crude lactone $\underline{6}$ (95% overall yield from $\underline{3}$), which crystallized from EtOH as a white powdered product (m p 79-80°C) 1 H-NMR H-7, 5 61 bs, H-1, 5 63 bd, H-4, 2 72 bd, CH₃-10, 1 83 bs, OCOCH₃, 2 06, 2 01 and 1 97 s (15 H)

The subsequent hydrogenation of $\underline{6}$ was carefully examined with different catalysts (Pd/C, PtO₂, Rh/C), in different solvents. The best results were with Rh on alumina at 1 atm. in distilled EtOAc with the temperature ranging from 0°C to r t. over 24 hrs. We were able, with the latter conditions, to obtain $\underline{7}$ and $\underline{8}$ in the ratio of 2 1 (95% yield), without traces of hydrogenolysis products. The crude mixture was chromatographed (silica gel) to give almost pure products subsequently crystallized from EtOH. $\underline{7}$ (m p. 81-83°C) and $\underline{8}$ (m p. 89-90°C)

The exact configuration of the methyl group in both $\frac{7}{2}$ and $\frac{8}{2}$ was assigned by $^{13}\text{C-NMR}$ analysis, on the basis of several analogous examples

Subsequently, the lactone $\underline{7}$ was hydrolyzed with aqueous K_2CO_3 in MeOH affording the hydroxy acid $\underline{9}$ as colorless oil IR (CHCl₃) 3500, 2730, 1730 and 1710 cm⁻¹, ¹H-NMR COOH, 10 5 s, CHO, 9 10 d, J=4 Hz, CH₃, 1 10 d, J=6 5 Hz Alkaline hydrolysis effected, as expected, the inversion

of configuration at C-12, with the isomerization of the CHO group to the more stable \underline{trans} position

SCHEME 1

Finally the treatment of $\underline{9}$ with MsCl in anhydrous Py (0°C for 1 hr) afforded the desired Corey's lactone analogue $\underline{10}$ (65% overall yield from $\underline{7}$) as colorless oil, after purification by silica gel chromatography IR (CHCl₃) 2730, 1765 and 1720 cm⁻¹ ¹H-NMR CHO, 9 61 d, J=3 3 Hz, H-9, 4 93 m, CH₃, 1 10 d, J=6 6 Hz

NOTES AND REFERENCES

- This work has been part of a paper presented at the 184th meeting of the A C S. in Kansas City, Sept 13-17, 1982, Division of Organic Chemistry, paper no 169
- 2 a) M Naruto, K Ohno, N Naruse and H. Takeuchi, Tetrahedron Lett. 251 (1979) and references therein, b) W F Berkowitz, S C Choudhry and J A Hrabie, J Org Chem 47, 824 (1982) and references therein, c) A Tixidre, Y. Rolland, J Garnier and J Poisson, Heterocycles 19, 253 (1982)
- 3. C Bonini and R Di Fabio, J Org Chem. 47, 1343 (1982).
- 4. The synthesis of methyl prostaglandins has been realized by several groups (see K Inoue, J Ide and K Sakai, Bull Chem Soc Japan 51, 2361 (1978) and references therein, also, recently there has appeared another approach to these biologically important prostaglandin analogues (A E Greene, M A Teixejria, E Barreiro, A Cruz and P Crabbé, J Org Chem 47, 2553 (1982))
- 5 A Bianco, M Guiso, C Iavarone, P Passacantilli and C Trogolo, Gazz. Chim Ital 107, 83 (1977)
- ¹H-NMR spectra were recorded at 90 MHz (compounds $\underline{6}$, $\underline{7}$, $\underline{8}$, $\underline{9}$, in CDC1₃ with TMS as internal standard) and at 300 MHz (compound 10 in CDC1₃)
- 7 The significant chemical shift values which allowed the assignment of structures to compounds $\underline{7}$ and $\underline{8}$ are (CDCl₃ with TMS as internal standard) 15 41 ppm (CH₃) and 42 09 ppm (C-9) for $\underline{7}$, 18 93 ppm (CH₃) and 46 46 ppm (C-9) for $\underline{8}$ See ref 3 and references therein)
- 8 All the new compounds gave satisfactory elemental analysis